Anisotropic superconductivity in NbSe$_2$ probed by magnetic penetration depth

P. Diener a, P. Rodière a,*, J.D. Fletcher b, A. Carrington b, J.P. Brison a, R. Prozorov c, T. Olheiser d, R.W. Giannetta d

a Institut Néel, CNRS/UJF, BP 166, 38042 Grenoble Cedex 9, France
b H.H. Wills Laboratory, University of Bristol, Tyndall Avenue, BS8 1TL, United Kingdom
c Department of Physics and Astronomy, Ames Laboratory, Iowa State University, Ames, IA 50011, United States
d Department of Physics, University of Illinois at Urbana-Champaign, 1110 West Green St., Urbana, 61801 IL, United States

Available online 27 March 2007

Abstract

NbSe$_2$ shows coexistence of a charge density wave ($T_{CDW} \sim 32$ K) with a superconducting state below $T_c = 7.2$ K. Recent ARPES measurements revealed different values of the superconducting gap on the main sheets of the Fermi surface. These results suggest a multigap superconductivity such as in MgB$_2$. The temperature dependence of the magnetic penetration depth ($\kappa(T)$) down to $T_c/16$ has been measured on high quality single crystals in the Meissner state. A strong increase of the in-plane penetration depth is observed, signaling the presence of low lying excitations. Given the relative contributions of each Fermi surface sheet, these measurements indicate that a reduced gap is not necessarily only found on the small Se sheet as suggested by the ARPES measurements. These results are discussed in a framework of multigap superconductivity.

© 2007 Elsevier B.V. All rights reserved.

Keywords: NbSe$_2$; Penetration depth; Superfluid density

The hexagonal dichalcogenides NbSe$_2$ has attracted a large interest in the last few decades for the coexistence of an incommensurate charge density wave with a superconducting state below $T_c = 7.1$ K [1]. Furthermore, the superconducting state shows unusual properties, which can not be explained by an isotropic BCS weak coupling model. For example, the electronic specific heat has already shown the presence of a reduced energy gap [2]. Recently, NbSe$_2$ has been revisited in the light of multigap superconductivity. ARPES measurement suggested that the low energy excitation gap is due to the Se p-band which has a small electron–phonon coupling constant [3]. A directional probe combined to the particular anisotropy of the Fermi Surface of NbSe$_2$ allows us to test the excitation gap on the different sheets.

In this paper, we present high sensitivity measurements of the change of the in-plane and c-axis temperature dependence of the magnetic penetration depth in the Meissner state (respectively $\Delta \kappa_a$ and $\Delta \kappa_c$). The detailed results are published elsewhere [4].

1. Experimental method

$\Delta \kappa_i$ ($i = a$ or c) was measured with a LC circuit driven by a tunnel diode operating at 14 MHz. The very low AC field probe (\sim10 μT) and the screening of any DC magnetic field ensured that the sample was kept in the Meissner state. The frequency shift of the LC oscillator is directly proportional to $\Delta \kappa$.

Single crystals from three sources (Lausanne, Tsukuba, Bell Lab) have been measured in three different laboratories (Grenoble, Bristol, Urbana-Champaign respectively). Crystals of thickness t were grown with large flat layers.
perpendicular to the \(c \)-axis. Each side of the samples were cut. Samples from different batches have a RRR between 33 and 70 (see inset Fig. 1). No drastic change with sample quality has been observed.

When the magnetic field is applied along the \(c \)-axis, the supercurrents are flowing only in the basal plane. However, for a magnetic field applied perpendicular to the basal plane, both, a and \(c \)-axis directions are probed. For a sample of rectangular shape with a section \(\frac{a}{2} \times t \times w \), the frequency shift is proportional to \(D_k a + \frac{t}{2} D_k c \). To extract the out-of-plane penetration depth the aspect ratio of a sample is changed by cutting.

2. Results

In Fig. 1 the low temperature dependence of the in-plane penetration depth is shown. All the curves are fitted with the approximated expression (valid for \(kT < T_c/3 \)):

\[
\Delta \lambda_i(T) \simeq \lambda_i(0) \sqrt{\frac{\pi D_0}{2T}} \exp\left(-\frac{D_0}{T}\right)
\]

where \(D_0 \) is the superconducting gap at \(T = 0 \) K. We find \(D_0 = 1.1 \pm 0.1kT_c \), less than the value expected for a weak coupling BCS gap (~1.76\(kT_c \)). In Fig. 2 the low temperature dependence of the \(c \)-axis penetration depth is fitted for \(T < 2 \) K with the same expression. A gap of \(D_0 = 1.3 \pm 0.1kT_c \) is measured.

The experimental results have to be compared with the calculated Fermi surface. The Fermi surface of \(\text{NbSe}_2 \) is formed of two cylinders along the \(c \)-axis from the 4d-electrons of the Nb and also a small flat pancake around the center of the Brillouin zone from the p-electron of the Se. This sheet contributes only to 2% to the total in-plane superfluidity but 85% to the out-plane superfluidity [5]. So the reduced energy gap measured by in-plane penetration depth is on one or more of the quasi-2D Nb sheets. Moreover, \(\Delta \lambda_c \) shows that the superconducting gap associated to the Se sheet is not smaller than the smallest gap of the quasi-2D Nb band. These results are in strong contrast with previous measurements [3].

References