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The two gaps in a two-band clean s-wave superconductor are evaluated self-consistently within the quasi-
classical Eilenberger weak-coupling formalism with two in-band and one interband pairing potentials. Super-
fluid density, free energy, and specific heat are given in the form amenable for fitting the experimental data.
Well-known two-band MgB2 and V3Si superconductors are used to test the developed approach. The pairing
potentials obtained from the fit of the superfluid density data in MgB2 crystal were used to calculate
temperature-dependent specific heat C�T�. The calculated C�T� compares well with the experimental data.
Advantages and validity of this, which we call the “� model,” are discussed and compared with the commonly
used empirical �and not self-consistent� “� model.” Correlation between the sign of the interband coupling and
the signs of the two order parameters is discussed. Suppression of the critical temperature by the interband
scattering is evaluated and shown to be severe for the interband repulsion as compared to the attraction. The
data on a strong Tc suppression in MgB2 crystals by impurities suggest that the order parameters on two
effective bands of this material may have opposite signs, i.e., may have the s� structure similar to proposals for
iron-based pnictide superconductors.
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I. INTRODUCTION

Nearly all superconductors discovered recently and some
well-studied compounds �e.g., MgB2, Nb2Se, V3Si, and
ZrB12� �Refs. 1–5� are multiband materials with complex
Fermi surfaces and anisotropic order parameters. Measuring
temperature dependences of the London penetration depth
��T�, often converted to the superfluid density
��T�=��0�2 /��T�2, and of the electronic specific heat C�T�,
are among primary tests directly linked to pairing mecha-
nisms of new superconductors. Still, the methods employed
to interpret the data are often empiric with simplicity as a
main justification.

The most popular among practitioners � model takes a
shortcut by assigning the BCS temperature dependence to
the two gaps �1,2 with which to fit data on the specific heat1

and the superfluid density �=x�1+ �1−x��2.2,6 Here, �1,2 are
evaluated with �1,2= ��1,2 /1.76��BCS�T� and x takes into ac-
count the relative band contributions. Although the � model
had played an important and timely role in providing con-
vincing evidence for the two-gap superconductivity in
MgB2,1,2 it is intrinsically inconsistent in the most important
task of this procedure, namely, in describing properly the
temperature dependencies of ��T� and C�T�. In fact, one can-
not a priori assume temperature dependencies for the gaps in
the presence of, however, weak interband coupling imposing
the same Tc for two bands. In an unlikely situation of zero
interband coupling, two gaps would have single-gap BCS-
type T dependencies but will have two different transition
temperatures �see Fig. 1�.

The full-blown microscopic approach based on the
Eliashberg theory, on the other hand, is quite involved and
not easy for the data analysis.7–12 Hence, the need for a rela-
tively simple but justifiable, self-consistent, and effective
scheme experimentalists could employ. The weak-coupling
model is such a scheme. Over the years, the weak-coupling
theory had proven to describe well the multitude of super-

conducting phenomena. Similar to the weak coupling is the
“renormalized BCS” model of Ref. 13 that incorporates the
Eliashberg corrections in the effective coupling constants in
a manner described below. We will call our approach as a
“weak-coupling two-band scheme” and clarify in the text
below that the applicability of the model for the analysis of
the superfluid density and specific-heat data is broader than
the traditional weak coupling.

The s-wave weak-coupling multigap model has been pro-
posed at the dawn of superconductivity theory by
Moskalenko14 and Suhl et al.15 when numerical tools were
still in infancy. In this work, we basically follow these semi-
nal publications to develop a self-consistent procedure for
the penetration-depth data analysis. Our scheme allows one
to connect between two independent data sets—the super-

FIG. 1. �Color online� Calculated superfluid density and the
gaps vs the reduced temperature �inset� for zero interband coupling
�12=0. In this calculation, �11=0.5, �22=0.45, n1=n2=0.5, and
�=0.5 �see the text�.
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fluid density and the specific heat—thus providing a reliabil-
ity check upon values of the coupling constants extracted
from fitting the data. We also discuss the suppression of the
critical temperature Tc by nonmagnetic impurities and sug-
gest that the data on this suppression for MgB2 are consistent
with a weak repulsive interband interaction that corresponds
to opposite signs of the order parameter on two bands, i.e., to
�s structure of the order parameter.

To test our formal scheme, the data for two known s-wave
two-gap superconductors MgB2 and V3Si were used. The
specific-heat data were taken from Ref. 16. The penetration
depth ��T� was measured by using a self-oscillating
tunnel-diode resonator �TDR� with resonant frequency
f0�14 MHz. The measured quantity is the shift of this fre-
quency f�T�− f0=−4���T�G, where � is the total magnetic
susceptibility in the Meissner state and G� f0Vs /2Vc�1−N�
is a geometric factor defined by volumes of the coil Vc and of
the sample Vs and by the demagnetization factor N. The fac-
tor G is measured directly by pulling the sample out of the
coil at the lowest temperature.6 For the susceptibility, we use
4��= �� /w��tanh�w /��−1�, where w is a characteristic
sample size.17

II. EILENBERGER TWO-BAND SCHEME

Perhaps, the simplest formally weak-coupling approach is
based on the Eilenberger quasiclassical formulation of the
superconductivity valid for general anisotropic order param-
eters and Fermi surfaces.18 Eilenberger functions f ,g for
clean materials in equilibrium obey the system,

0 = 2�g/	 − 2
f , �1�

g2 = 1 − f2, �2�

��k� = 2�TN�0� �

�0


D

�V�k,k��f�k�,
�	k�. �3�

Here, k is the Fermi momentum; � is the gap function which
may depend on the position k at the Fermi surface in cases
other than the isotropic s wave. Further, N�0� is the total
density of states at the Fermi level per one spin; the Matsub-
ara frequencies are defined by 	
=�T�2n+1� with an inte-
ger n, and 
D is the Debye frequency; and � . . . 	 stands for
averages over the Fermi surface. As a weak-coupling theory,
the Eilenberger scheme deals with the effective electron-
electron coupling V responsible for superconductivity; prop-
erties of intermediate bosons �phonons or other possible me-
diators� enter via properly renormalized V.

Consider a model material with the gap given by

��k� = �1,2, k � F1,2, �4�

where F1 ,F2 are two sheets of the Fermi surface. The gaps
are constant at each band. Denoting the densities of states on
the two parts as N1,2, we have for a quantity X constant at
each Fermi sheet,

�X	 = �X1N1 + X2N2�/N�0� = n1X1 + n2X2, �5�

where n1,2=N1,2 /N�0�; clearly, n1+n2=1.

Equations �1� and �2� are easily solved. Within the two-
band model, we have

f� =
��

�

, g� =
	


�

, �
2 = ��

2 + 	2
2, �6�

where the band index �=1,2. The self-consistency equation
�3� takes the form

�� = 2�T �
�=1,2

n����f� = �
�

n�������




D 2�T

�

, �7�

where ���=N�0�V�� ,�� are dimensionless effective interac-
tion constants.

A remark is here in order about applicability of Eq. �7�
central to our approach. Starting with the general Eliashberg
formalism, Nicol and Carbotte derived a renormalized BCS
self-consistency equation13

�� =
2�T

Z�
�
�,



D

����
ph − ���

� �f�, �8�

where ���
ep is the coupling due to electron-phonon interaction,

���
� describes the Coulomb interaction, and Z�=1+�����

ep is
the strong-coupling renormalization. Replacing
����

ep −���
� � /Z�→n����, we obtain our Eq. �7�. One should

have this in mind while interpreting the constants ���, which
can be obtained from fitting the data to our renormalized
weak-coupling model.

Note that the notation commonly used in literature for
���

�lit� differs from ours: ���
�lit�=n����. We find our notation

convenient since, being proportional to the coupling poten-
tial, our coupling matrix is symmetric: ���=���. It is worth
stressing that for a given coupling matrix ���, relative den-
sities of states n�, and the energy scale 	
D, Eq. �7� deter-
mines both Tc and �1,2�T�.

A. Critical temperature Tc

As T→Tc, �1,2→0, and →	
. The sum over 
 in Eq.
�7� is readily evaluated,

S = �




D 2�T

	

= ln

2	
D

Tc�e−� = ln
2	
D

1.76Tc
, �9�

�=0.577 is the Euler constant. This relation can also be writ-
ten as

1.76Tc = 2	
De−S. �10�

The system �7� is linear and homogeneous,

�1 = S�n1�11�1 + n2�12�2� ,

�2 = S�n1�12�1 + n2�22�2� . �11�

It has nontrivial solutions �1,2 if its determinant is zero,

S2n1n2� − S�n1�11 + n2�22� + 1 = 0,

� = �11�22 − �12
2 . �12�

The roots of this equation are
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S =
n1�11 + n2�22 � 
�n1�11 + n2�22�2 − 4n1n2�

2n1n2�
,

=
n1�11 + n2�22 � 
�n1�11 − n2�22�2 + 4n1n2�12

2

2n1n2�
. �13�

Since Tc�	
D, Eq. �10� shows that only positive S are ad-
missible. The second form �Eq. �13�� shows that both roots
are real; their product is S1S2=1 /n1n2�. Choosing a proper
root, one should consider various possibilities.

If ��0 �that implies both �11 and �22 are of the same
sign�, Eq. �13� shows that both roots are positive and one
should choose the smallest �to have maximum Tc�. If ��0
��12

2 ��11�22 that can happen �i� for a sufficiently strong in-
terband coupling for both �11 and �22 positive or �ii� if one of
�11, �22 is repulsive�, one should take the square root with
minus.

It is of interest to note that even for �11=�22=0, the in-
terband coupling of either sign may lead to superconductiv-
ity. In fact, S=1 /
n1n2��12� for a dominant interband inter-
action ��12�� �n1�11+n2�22�. However exotic, this possibility
should not be ignored. This situation has been considered
time ago by Geilikman19 who found that interband Coulomb
repulsion could lead to superconductivity; recently this pos-
sibility has been considered by Mazin and Schmalian in a
discussion of superconductivity in the iron pnictides.20

If �=0, Eq. �12� yields S=1 / �n1�11+n2�22�. Finally, if
the interband coupling is exactly zero, a quite unlikely situ-
ation, the second form of S in Eq. �13� gives two roots
1 /n1�11 and 1 /n2�22. The smallest one gives Tc, whereas the
other corresponds to the temperature at which the small gap
turns zero. This situation is depicted in Fig. 1.

We conclude this incomplete list of possibilities by noting
that within this model, interband coupling enters S only as
�12

2 , i.e., interband attraction in clean materials affects Tc
exactly as does the repulsion. This is no longer true in the
presence of interband scattering, the question discussed be-
low.

Denoting the properly chosen root as S=1 / �̃, we have

1.76Tc = 2	
D exp�− 1/�̃� . �14�

One easily checks that for all �’s equal this yields the stan-
dard BCS result. Among various possibilities we mention
here, the case �=�11�22−�12

2 =0 for which

�̃ = n1�11 + n2�22 = ��	 . �15�

This case corresponds to a popular model with factorizable
coupling potential V�k ,k��=V0��k���k��.21 This potential is
amenable for the analytic work, but it curtails severely the
richness of the two-band scheme.

Since the determinant of the system �11� is zero, the two
equations are equivalent and give near Tc,

�2

�1
=

�̃ − n1�11

n2�12
. �16�

When the right-hand side is negative, �’s are of opposite
signs. Within the one-band BCS, the sign of � is a matter of

convenience; in fact for one band, the self-consistency equa-
tion determines only ���. For two bands, �1 and �2 may have
opposite signs. If the � values are +D1 and −D2, Eq. �7�
shows that −D1 and +D2 is a solution too. One should be
aware of this multiplicity of solutions when solving the sys-
tem �7� numerically. The problem is even worse because
�1=�2=0 is always a solution.

B. Order parameter

Turning to evaluation of ���T�, we note that the sum in
Eq. �7� is logarithmically divergent. To deal with this diffi-
culty, we employ Eilenberger’s idea of replacing 	
D with
the measurable Tc. These are related by Eq. �14� which can
be written as

1

�̃
= ln

T

Tc
+ �





D 2�T

	

. �17�

Now add and subtract, the last sum from one in Eq. �7�,

�� = �
�

n��������




D 2�T

�

−
2�T

	

� + �





D 2�T

	

� ,

=�
�

n��������



� 2�T

�

−
2�T

	

� +

1

�̃
− ln

T

Tc
� . �18�

The last sum over 
 is fast converging and one can replace

D with �. Numerically, the upper limit of summation over n
can be set as a few hundreds that suffices even for low tem-
peratures. Introducing dimensionless quantities

�� =
��

2�T
=

��

Tc

1

2�t
, �19�

with t=T /Tc, we rewrite Eq. �18�,

�� = �
�=1,2

n������ 1

�̃
+ ln

Tc

T
− A�� ,

A� = �
n=0

�  1

n + 1/2
−

1


��
2 + �n + 1/2�2� . �20�

For given coupling constants ��� and densities of states n�,
this system can be solved numerically for �� and therefore
provide the gaps ��=2�T���t�. Two examples of these solu-
tions with the sets of parameters differing only in �12 are
given in insets to Figs. 1 and 2. We observe that even a small
interband coupling changes drastically the behavior of the
small gap.

C. Superfluid density

Having formulated the way to evaluate ��T�, we turn to
the London penetration depth given for general anisotropies
of the Fermi surface and of � by �see, e.g., Ref. 22�
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��L
2�ik

−1 =
16�2e2N�0�T

c2 �


��0

2vivk

3 � , �21�

where vi is the Fermi velocity. We consider here only the
case of currents in the ab plane of uniaxial or cubic materials
with two separate Fermi-surface sheets, for which a simple
algebra gives for the superfluid density �=�ab

2 �0� /�ab
2 �T�,

� = ��1 + �1 − ���2,

�� = ��
2�

n=0

�

���
2 + �n + 1/2�2�−3/2,

� =
n1v1

2

n1v1
2 + n2v2

2 , �22�

where v�
2 are averages over corresponding band of the in-

plane Fermi velocities. The formal similarity of the first line
here to the widely used � model prompts to name our
scheme as the � model. We note, however, that these models
are quite different: our � that determines partial contributions
from each band is not just a partial density of states n1 of the
� model, instead it involves the band’s Fermi velocities; be-
sides, we do not use renormalized BCS gaps, instead we
calculate �1,2�T� self-consistently.

We now apply the approach developed to fit the data for
the superfluid density of MgB2 crystals acquired by using the
TDR technique described above. Figure 3 shows the result of
the fitting with three free parameters �11, �22, and �12. The
partial density of states and the parameter � were taken from
the literature: the two-band mapping of the four-band MgB2
gives n1=0.44 and the Fermi velocities �vab

2 	1=3.3 and
�vab

2 	2=2.3�1015 cm2 /s2.23,24 The fit requires solving two
coupled nonlinear equation �20�. We used MATLAB with the
OPTIMIZATION TOOLBOX and utilized a nonlinear solver using
direct Nelder-Mead simplex search method.25 The result is

shown in Fig. 3 with the best-fit parameters listed in the
caption. We show below that the same set of parameters used
to calculate the free energy and the specific heat reproduces
the data on C�T� remarkably well.

Our numerical experimentation shows that if, in addition
to coupling constants, the partial densities of states and the
Fermi velocities are also used as fit parameters, the numeri-
cal procedure becomes unstable and equally good fits can be
found for various combinations of fit parameters. In the case
of MgB2, n� and v� are known and our fitting is quite certain.
For V3Si, we do not have detailed information regarding the
band structure, partial densities of states, and Fermi veloci-
ties on separate sheets of the Fermi surface. Hence, we took
all those as free parameters in the fitting procedure. The con-
clusions thus are less reliable for this material than for
MgB2: being mapped onto a two-band model, V3Si comes
out to have two nearly decoupled bands with an extremely
weak interband coupling �still sufficient to give a single Tc�.
The results and the best-fit parameters are given in the cap-
tion of Fig. 4. Note that the long linear tail in ��t� as T
approaches Tc is a direct manifestation of a very small gap,
in this case �1, in this temperature domain.

III. FREE ENERGY AND SPECIFIC HEAT

By fitting the data for ��t�, we can extract the coupling
constants ��� along with ���T�. This allows one to determine
all thermodynamic properties of the material in question, of
which we consider here the specific heat C�T� and its jump at
Tc. To this end, one starts with the Eilenberger expression for
the energy difference,

Fn − Fs

N�0�
= 2�T�

�,

n�

�� − 	
�2

�

. �23�

Near Tc, one obtains,

FIG. 2. �Color online� Calculated superfluid density and the
gaps vs the reduced temperature �inset� for �12=0.01, �11=0.5,
�22=0.45, n1=n2=0.5, and �=0.5 �see the text�.

FIG. 3. �Color online� The data and fits of the superfluid density
for MgB2 single crystal and corresponding temperature-dependent
gaps �inset�. The fitting parameters are �11=0.23, �22=0.08, and
�12=0.06; the partial density of states n1=0.44 and �=0.56 were
fixed.
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Fn − Fs

N�0�
=

7��3�
16�2Tc

2�
�

n���
4,

=7��3��2Tc
2�

�

n���
4. �24�

Following Ref. 14, one can look for solutions ���t� of Eq.
�20� near Tc as an expansion,

�� = a��1/2 + b��3/2, � = 1 − t . �25�

We substitute this in Eq. �20� and compare terms of different
powers of �; the quantity A�=7��3�a�

2 � /2+O��2�. In the
lowest order we obtain the system of linear homogeneous
equations for a1,2 that coincides with the system �11�. The
same arguments that led to Eq. �16� provide

a2 = a1G = a1
�̃ − n1�11

n2�12
. �26�

The conditions for the existence of nontrivial solutions for b�

in the next order provide the second relation for a�. We omit
a cumbersome algebra and give the result

a1
2 =

2

7��3�
�̃2 − n1n2�

�̃�n1�11 + n2�12G
3� − n1n2�

. �27�

We now obtain the energy near Tc,

Fn − Fs = 7��3�N�0��2Tc
2�

�

n�a�
4�2 = B�2, �28�

and the specific heat,

Cs − Cn =
2B

Tc
= 14��3��2N�0�Tc�

�

n�a�
4. �29�

The relative jump at Tc is,

�C

Cn
=

12

7��3�
�n1 + n2G4�� �̃2 − n1n2�

�̃�n1�11 + n2�12G
3� − n1n2�

�2

.

�30�

If all coupling constants are the same, �=0, G=1, and
�C /Cn=12 /7��3�=1.43, as is should be. We note that the
sign of the interband coupling �12 has no effect on the jump
�C since in Eq. �30� �12G is insensitive to this sign.

It is easy to study numerically the jump dependence on
the three coupling parameters. As an example, we show in
Fig. 5 the jump dependence on the mismatch between �11
and �22 for a fixed �12 for two values of n1. One can see that
for equal relative densities of states, the jump peaks at
�22=�11 at the one-band BCS value of 1.43; with the fixed
�11 and changing �22 the jump drops with the mismatch
��22−�11�. The peak position and the drop speed vary with
varying bands contributions so that the value of the jump per
se cannot be interpreted as evidence for a particular order
parameter.

Now we can test our model by employing parameters
from the fit to the data on superfluid density �Fig. 3� to cal-
culate the free energy and the specific heat. The result is
shown in Fig. 6. The single-gap weak-coupling BCS specific
heat is shown for comparison. The solid line is not a fit but a
calculation with parameters determined in independent mea-
surement. The data are taken from Ref. 16. Since this is not
a fit, the agreement with the general behavior of C�T� and, in
particular, with value of the jump at Tc is remarkable.

IV. Tc SUPPRESSION BY NONMAGNETIC IMPURITIES

The intraband scattering does not affect Tc, so that we
focus on the effect of interband scattering with an average
scattering time �. Since g=1 at Tc, the Eilenberger equations
for f1,2 in two bands read as26

FIG. 4. �Color online� The data and fits of the superfluid density
for V3Si single crystal and corresponding temperature-dependent
gaps �inset�. The fitting parameters are �11=0.1, �22=0.1,
�12=1�10−5, n1=0.47, and �=0.4.

FIG. 5. �Color online� Dependence of the specific-heat jump on
the mismatch between �11 and �22. �C /CN at Tc normalized on the
BCS value of 1.43 is calculated using Eq. �30� with �11=0.3,
�12=0.06, and two values of n1 and plotted vs �22.

SUPERFLUID DENSITY AND SPECIFIC HEAT WITHIN A… PHYSICAL REVIEW B 80, 014507 �2009�

014507-5



0 = 2�1 − 2
f1 + �2�f2 − f1�/� , �31�

0 = 2�1 − 2
f1 + �2�f2 − f1�/� , �32�

�	=1�. This system yields,

f1 =
�1�
 + n1/2�� + ��2n2/2��



�
, �33�

f2 =
�2�
 + n2/2�� + ��1n1/2��



�
, �34�

where 
�=
+1 /2�. The self-consistency equation,

�� = �
�,


n����f�, �35�

again reduces to a system of linear and homogeneous equa-
tions for �1,2, the determinant of which must be zero. Omit-
ting the algebra, we give the result,

P2n1n2� − P�n1�11 + n2�22 − n1n2�Q�

+ 1 − Q�n1�1 + n2�2� = 0, �36�

�1 = n1�11 + n2�12, �2 = n2�22 + n1�12, �37�

� is defined in Eq. �12�. The quantities P ,Q are given by

P = �



2�Tc


�
= ln


D

2�Tc
− �1

2
+

�0

2t
� , �38�

Q =
1

2�
�



2�T



�
= �1

2
+

�0

2t
� − �1

2
� , �39�

where t=Tc /Tc0 with Tc0 being the critical temperature of the
clean material given in Eq. �14�. The scattering parameter

�0 =
1

2�Tc0�
. �40�

One can easily rearrange P to the form,

P =
1

�̃
− ln t − Q . �41�

Next, one solves the quadratic equation �36� for P and
chooses the smaller of two roots �with the minus sign in front

of the square root�. Denoting this root as Pr��̂ ,�0 , t�, where �̂
stands for the set of all coupling constants and of partial
densities of states, we obtain an implicit equation for t���
that can be solved numerically,

1

�̃
− ln t − Q�t,�� = Pr��̂,�,t� . �42�

For the case �=0, the only root of Eq. �36� is

Pr =
1 − Q�n1�1 + n2�2�

n1�11 + n2�22
. �43�

Since in this particular case �̃=n1�11+n2�22, we obtain

− ln t = Q1 −
n1

2�11 + 2n1n2�12 + n2
2�22

n1�11 + n2�22
� . �44�

One can verify that this coincides with the suppression for-
mula obtained within the model with factorizable coupling
potential �see Ref. 22 or a more general work by Openov27�.
With the parentheses on the right-hand side equal to 1, this is
just the Abrikosov-Gor’kov result for the Tc suppression by a
pair breaker with the scattering parameter �0. Thus, only if
n1

2�11+2n1n2�12+n2
2�22�0, or

�12 � −
n1

2�11 + n2
2�22

2n1n2
, �45�

Tc drops to zero at a finite �. Otherwise, Tc��0� is a decreas-
ing function of �0 that goes to zero as �0→�.

One can show numerically that these features of the Tc
suppression are qualitatively the same for a general two-band
case: unlike formulas of preceding sections for clean materi-
als, the sign of the interband coupling �12 does affect the Tc
suppression. One can verify that the interband scattering
causes faster decrease in Tc if the interband coupling is re-
pulsive, �12�0.

To illustrate this point, we calculate suppression of Tc
with the coupling parameters �11=0.3, �22=0.2, and with
three different values of �12 shown in Fig. 7. Whereas with
positive �12 the suppression is weak and similar to the case
of materials having one anisotropic gap, the suppression for
�12�0 is much stronger.

This finding can be checked experimentally and, in fact,
the recent data on unusually strong suppression of Tc with
carbon, aluminum, or lithium doping28 imply that MgB2
might have repulsive interband coupling. Otherwise, it is
hard to reconcile the Tc suppression by a factor of 4 by 15%
of C substitution. If one interprets this effect as caused by
impurities scattering, Eq. �42� with �12=+0.06 provides

FIG. 6. �Color online� Normalized electronic specific heat
C�T� /CN�T�. Symbols are the data from Ref. 16. The solid line
shows the result of the � model; it is calculated using the energy
�23� with parameters determined from the fit to the data on the
superfluid density.
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�0�103 needed for such a suppression. This value of the
scattering parameter corresponds to unrealistically short
mean-free path ��1 Å or less. Changing the sign of �12 to
negative �i.e., taking the interband coupling as repulsive�,
results in �0�0.37 and a reasonable estimate of ��400 Å.
The negative interband coupling would imply opposite signs
of the order parameter on the two effective bands of MgB2,
i.e., �s order parameter, a verifiable proposition, given the

recent experiments confirming �s order parameter in iron
pnictides.29

V. SUMMARY

We have presented a two-band weak-coupling � model
that takes into account self-consistently all relevant coupling
constants to evaluate temperature dependencies of the two
gaps, of the superfluid density, and of the specific heat in
clean s-wave materials. The interband coupling is shown to
have a strong effect on these dependencies irrespective of the
sign of this coupling. In particular, if the interband coupling
is negative �repulsive� it may cause the two order parameters
to have opposite signs, i.e., the order parameter may have the
�s structure. In this case, the Tc suppression by interband
scattering should be very strong; the feature that can be uti-
lized as a signature of the �s order parameter. We speculate
that a strong Tc suppression by various dopants in MgB2 may
signal such a possibility. All these features make the model
advantageous to the empiric and not self-consistent � model
commonly employed to interpret the data on penetration
depth and specific heat of two-gap materials.
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