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Abstract. Tunnel-diode resonator technique was used to study crystals of ferromagnetic re-
entrant superconductor, ErRh4B4. At the boundary between ferromagnetism (FM) and su-
perconductivity (SC), dynamic magnetic susceptibility, χ(T, H), exhibits highly asymmetric
behavior upon warming and cooling as well as enhanced diamagnetism on the SC side. SC
phase nucleates upon warming in a cascade of discontinuous jumps in magnetic susceptibility
χ(T, H), whereas FM phase develops gradually as reported in detail in [1]. Here we further
investigate enhanced diamagnetism. We find that when a magnetic field is applied along the
magnetic easy axes, a region of enhanced diamagnetic screening is smaller than in the perpen-
dicular orientation. A discussion of possible causes of this effect is provided.
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Superconductivity (SC) and local-moment ferromagnetism (FM) coexisting in the same
volume is an interesting theoretical and experimental problem [2–7]. To this day, there are
only few, confirmed, local-moment ferromagnetic superconductors, HoxMo6S8 [8] (TFM ≈ 0.7
K, Tc ≈ 1.8 K) and much studied ErRh4B4 [3–7, 9, 10] (TFM ≈ 1 K, Tc ≈ 8.5K). Here Tc is
a superconducting transition temperature and TFM is the ferromagnetic Curie temperature,
although the latter is more difficult to determine, because FM develops on a SC background.

In ErRh4B4 superconductor the ferromagnetic phase is primitive tetragonal with spontaneous
magnetization along the a− axis. Anisotropies of the first, Hc1, and second, Hc2, critical fields
were studied in detail by Crabtree et al. [11, 12]. When a magnetic field was oriented along the
easy magnetic a− axis, Ha

c2 exhibited a peak at 5.5 K interpreted to be due to large paramagnetic
spin susceptibility in that direction [5, 11]. For a magnetic field applied along the hard c− axis,
Hc

c2 collapses near the onset of FM.
Much of prior work has focused on the question of the microscopic structure of the coexisting

phase. Neutron diffraction found modulated ferromagnetic structure with a period of ∼ 10 nm
[13, 14]. Other measurements suggested patches of SC and FM phases as large as ∼ 200 nm in
size with SC regions still containing modulated FM moment with a period of ∼ 10 nm [14]. Most
reports noted a profound hysteresis of the measured properties, temperature asymmetric upon
warming and cooling. This apparent first-order transition is consistent with the spiral state
suggested by Blount and Varma [15, 16]. Yet, other measurements found a continuos transition,
for example in neutron diffraction [13, 17] and specific heat experiments [18]. Such second-order
transition can be realized in a modulated structure or via spontaneous vortex phase.

Other theoretical models of the coexisting regime include ”cryptoferromagnetic” phase [3,
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Figure 1. 4πχ measured at
Hdc = 0 for Hac applied in two
orientations with respect to crystal
axes. Red circles show H ‖ c −
axis and blue squares show H ⊥
c − axis data. Note large magnetic
anisotropy at the FM/SC boundary
associated with easy/hard magnetic
axes. Inset shows detail of the transi-
tion with directions of warming and
cooling shown by arrows. The transi-
tion is only 0.1 mK wide, but shows
highly asymmetric, jerky on warm-
ing, curve.

19], vortex lattice modulated spin structure [20], type-I superconductivity [3, 20, 21], gapless
superconductivity and possibly, an inhomogeneous Fulde-Ferrell-Larkin-Ovchinnikov (FFLO)
state [3, 10]. Another interesting possibility is the development of superconductivity within
the ferromagnetic domain walls [22, 23]. Finally, Bulaevskii pointed out importance of the
demagnetization factor in determining the nature of the FM ↔ SC boundary [3].

In our recent paper, χ in the narrow region of the FM ↔ SC was analyzed in detail [1]. The
observed behavior was consistent with type-I like superconductor at the SC/FM boundary. In
this contribution we report anisotropic anomalous diamagnetic response close to a FM phase
that could be consistent with the development of an FFLO state.

The needle-shaped single crystals of ErRh4B4 were grown at high temperatures from a molten
copper flux as described in [24, 25]. The crystallographic c-axis was along the needles. χ was
measured with a tunnel-diode resonator (TDR) which is sensitive to changes in susceptibility
∆χ ∼ 10−8 [26].
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Figure 2. (a) 4πχ(T,H = 3kOe) in the transition region with graphical definitions of the onset,
TFM→SC , and last signature of diamagnetic signal, TSC→FM , shown by arrows. (b) magnetic
field dependence of the transition temperatures.
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Figure 3. 4πχ(T ) measured in two orientations at different magnetic fields. The anomalous
screening is best seen in (b) is marked by a line.

Figure 2 shows magnetic field evolution of the transition from FM to SC state marked by
TFM→SC upon warming and by TSC→FM upon cooling. Transition temperatures shift much
more when a magnetic field is oriented perpendicular to the magnetic easy axes. Within a model
proposed in our previous work, this behavior can be explained by noting that superconducting
regions must be sandwiched between ferromagnetic domains with walls oriented perpendicular to
the hard c− axis. When an external field is applied along the a− axis, it is only a small addition
to the internal Weiss field of a ferromagnet, thus TSC↔FM is changed only moderately. However,
when field is applied perpendicular to the domains, it tilts the magnetic moments inducing large
fields in the regions where SC would have appeared. Therefore the change in TSC↔FM is much
larger. It also implies that at least between TFM→SC and TSC→FM the system is ferromagnetic.

The difference between different orientations is clearly seen in Fig. 3, which shows 4πχ(T )
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Figure 4. H − T phase diagram of ErRh4B4 single crystal in two orientations. In addition to
FM boundary and second critical field, temperature of the minimum in 4πχ(T )
(maximum diamagnetism) is also shown.
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measured at different values of an applied magnetic field. An important novel feature is that
diamagnetic response seem to be enhanced close to the FM boundary. Note that we do not
attribute any significance to a dip at ∼ 4 K, which is simply due to a crossover between two
normal regions in a FM and PM states. Figure 4 shows the phase diagram constructed from
the measurements shown in Fig. 3. These diagram resembles the one proposed by Bulaevskii 20
years ago, see page 197 in Ref. [3]. In that work, samples of different shape were predicted to
demonstrate different behavior in the vicinity of the FM/SC border. In particular, our Fig. 4(a)
would map onto Fig. 7(a) of Ref. [3]. Although we could not change sample shape to explore other
demagnetization factors, turning magnetic field in our interpretation is equivalent to an increase
of demagnetization, as follows from our discussion of Fig. 2. If so, we may expect development of
an FFLO state in this orientation and Fig. 4(b) maps well onto Fig. 7(c) of Ref. [3] that exhibits
a large FFLO pocket. Indeed, this explanation is speculative without direct confirmation of the
microscopic modulation of the order parameter. However, we conclude that our model [1] in
which superconducting regions form between ferromagnetic domains remains plausible.
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